SELAMAT DATANG DI RUMAH ONLINE SYAHID MUJIBUR ROHMAN EL FURQONI

Senin, 29 Mei 2017

MAKALAH PENGINDERAAN JAUH


https://www.google.co.id/
BAB I
PENDAHULUAN
A.      Latar Belakang
Penginderaan jauh berkembang sangat pesat sejak lima dasawarsa terakhir ini. Perkembangannya meliputi aspek sensor, wahana atau kendaraan pembawa sensor, jenis citra serta liputan dan ketersediaannya, alat dan analisis data, dan jumlah pengguna serta bidang penggunaannya.
Di Indonesia, penggunaan foto udara untuk survey pemetaan sumber daya telah dimulai oleh beberapa instansi pada awal tahun 1970-an. Saat ini telah beredar banyak jenis satelit sumber daya. Mulai dari negara maju seperti Amerika Serikat, Kanada, Perancis, Jepang, Rusia, hingga negara-negara besar namun dengan pendapatan per kapita yang rendah seperti India dan Republik Rakyat Cina. Berbagai satelit sumberdaya yang diluncurkan itu menawarkan kemampuan yang bervariasi, dari resolusi spasial 0,6 meter (QuickBirth milik Amerika) hingga sekitar 1,1 kilometer (NOAA-AVHRR juga milik Amerika Serikat).  Berbagai negara di Eropa,  Amerika Utara,  Amerika Latin,  Asia  dan  bahkan  Afrika telah banyak memanfaatkan satelit itu untuk pembangunan.
B.       Rumusan Masalah
1.   Apa yang dimaksud dengan penginderaan jauh ?
2.   Apa manfaat penginderaan jauh ?
3.   Bagaimana penginderaan jauh dapat dilakukan ?
4.   Mengapa penginderaan jauh sangat berperan penting dalam berbagai hal ?
5.   Apa saja komponen penginderaan jauh ?
6.   Bagaimana cara menginterpretasi citra ?
C.      Tujuan
Penulisan makalah ini selain bertujuan untuk memenuhi tugas mata kuliah penginderaan jauh, juga diharapkan dapat menambah pengetahuan mengenai penginderaan jauh dan interpretasi citra serta manfaatnya yang diperlukan dalam berbagai bidang.


BAB II
PEMBAHASAN

A.      Pengertian Penginderaan Jauh
Penginderaan Jauh adalah ilmu dan seni untuk memperoleh informasi tentang obyek, daerah, atau gejala dengan jalan menganalisis data yang diperoleh dengan menggunakan alat tanpa kontak langsung terhadap obyek, daerah, atau gejala yang dikaji (Lillesand and Kiefer, 1979). Sedang menurut Lindgren, Penginderaan jauh ialah berbagai teknik yang dikembangkan untuk perolehan dan analisis informasi tentang bumi. Informasi tersebut khusus berbentuk radiasi elektromagnetik yang dipantulkan atau dipancarkan dari permukaan bumi.
Penginderaan jauh merupakan aktivitas penyadapan informasi tentang obyek atau gejala di permukaan bumi (atau permukaan bumi) tanpa melalui kontak langsung. Karena tanpa kontak langsung, diperlukan media supaya obyek atau gejala tersebut dapat diamati dan ‘didekati’ oleh si penafsir. Media ini berupa citra (image atau gambar). Citra adalah gambaran rekaman suatu obyek (biasanya berupa gambaran pada foto) yang dibuahkan dengan cara optik, elektro-optik, optik mekanik, atau elektronik. Pada umumnya ia digunakan bila radiasi elektromagnetik yang dipancarkan atau dipantulkan dari suatu obyek tidak langsung direkam pada film. Citra dihasilkan dari sensor yang dipasang pada wahana.
B.       Manfaat Penginderaan Jauh
Manfaat Penginderaan Jauh Secara Umum
Tujuan utama dari penginderaan jauh adalah untuk mengumpulkan data sumber daya alam dan lingkungan. Penginderaan jauh makin banyak dimanfaatkan karena berbagai macam alasan sebagai berikut :
1.   Citra dapat dibuat secara cepat meskipun pada daerah yang sulit ditempuh melalui daratan, contohnya hutan, rawa dan pegunungan.
2.   Citra menggambarkan obyek dipermukaan bumi dengan wujud dan letak objek mirip dengan sebenarnya, gambar  relatif lengkap, liputan daerah yang luas dan sifat gambar yang permanen
3.   Citra tertentu dapat memberikan gambar tiga dimensi jika dilihat dengan menggunakan stereoskop. Gambar tiga dimensi itu sangat menguntungkan karena menyajikan model obyek yang jelas, relief lebih jelas, memungkinkan pengukuran beda tinggi, pengukuran lereng dan pengukuran volume.
4.    Citra dapat menggambarkan  benda yang tidak tampak sehingga dimungkinkan pengenalan obyeknya. Sebagai contoh adalah terjadinya kebocoran pipa bawah tanah
5.   Citra sebagai satu-satunya cara untuk pemetaan daerah bencana.
Adapun manfaat penginderaan jauh dibidang geologi adalah
1.   Melakukan pemetaan permukaan, di samping pemotretan dengan pesawat terbang dan menggunakan aplikasi GIS.
2.   Menentukan struktur geologi dan macam batuan.
3.   Melakukan pemantauan daerah bencana (kebakaran), pemantauan aktivitas gunung berapi, aktivitas tektonik dan pemantauan persebaran debu vulkanik.
4.    Melakukan pemantauan distribusi sumber daya alam, seperti hutan (lokasi, macam, kepadatan, dan perusakan), bahan tambang
5.    
C.      Komponen Penginderaan Jauh

1.   Tenaga untuk Penginderaan Jauh

Pengumpulan data dalam penginderaan jauh dilakukan dari jarak jauh dengan menggunakan sensor buatan, untuk itu diperlukan tenaga penghubung yang membawa data tentang obyek ke sensor. Data tersebut dikumpulkan dan direkam dengan 3 cara dengan variasi sebagai berikut:
a.       Distribusi daya (force). Contoh: Gravitometer mengumpulkan data yang berkaitan dengan gaya tarik bumi.
b.        Distribusi gelombang bunyi. Contoh: Sonar digunakan untuk mengumpulkan data gelombang suara dalam air.
c.       Distribusi gelombang electromagnetik. Contoh: Camera untuk mengumpuilkan data yang berkaitan dengan pantulan sinar.
Dalam penginderaan jauh harus ada sumber tenaga yaitu matahari yang merupakan sumber utama tenaga elektromagnetik alami yang digunakan pada teknik pengambilan data obyek dalam penginderaan jauh. Penginderaan jauh dengan memanfaatkan tenaga alamiah disebut penginderaan jauh sistem pasif. Sedangkan sumber tenaga buatan digunakan dalam penginderaan jauh sistem aktif.
Tenaga ini mengenai obyek di permukaan bumi yang kemudian dipantulkan ke sensor. Ia juga dapat berupa tenaga dari obyek yang dipancarkan ke sensor. Jumlah tenaga matahari yang mencapaui bumi (radiasi) dipengaruhi oleh waktu (jam, musim), lokasi dan kondisi cuaca. Jumlah tenaga yang diterima pada siang hari lebih banyak bila dibandingkan dengan jumlahnya pada pagi atau sore hari. Kedudukan matahari terhadap tempat di bumi berubah sesuai dengan perubahan musim.

2.     Atmosfer
Atmosfer bersifat selektif terhadap panjang gelombang, sehingga hanya sebagian kecil saja tenaga elektromagnetik yang dapat mencapai permukaan bumi dan dimanfaatkan untuk penginderaan jauh. Bagian spektrum elektromagnetik yang mampu melalui atmosfer dan dapat mencapai permukaan bumi disebut “jendela atmosfer”. Jendela atmosfer yang paling dulu dikenal orang dan paling banyak digunakan dalam penginderaan jauh hingga sekarang ialah spektrum tampak yang dibatasi oleh gelombang 0,4 µm hingga 0,7 µm.
Panjang gelombang “Special Band” spektrum elektromagnetik dan saluran yang digunakan dalam penginderaan jauh (Sabins Jr., 1978).
Tenaga elektromagnetik dalam jendela atmosfer tidak dapat mencapai permukaan bumi secara utuh, karena sebagian dari padanya mengalami hambatan oleh atmosfer. Hambatan ini terutama disebabkan oleh butir-butir yang ada di atmosfer seperti debu, uap air dan gas. Proses penghambatannya terjadi dalam bentuk serapan, pantulan dan hamburan.

3.      Interaksi Tenaga dengan Objek
Tenaga dalam penginderaan jauh merupakan tenaga penghubung yang membawa data tentang objek ke sensor dapat berupa bunyi, daya magnetik, gay berat, dan tenaga elektromagnetik.

4.        Sensor atau Alat Pengindera
Sensor adalah alat yang digunakan untuk melacak, mendeteksi, dan merekam suatu obyek dalam daerah jangkauan tertentu. Tiap sensor memiliki kepekaan tersendiri terhadap bagian spektrum elektromagnetik. Kemampuan sensor untuk merekam gambar terkecil disebut resolusi spasial. Semakin kecil obyek yang dapat direkam oleh sensor semakin baik kualitas sensor itu dan semakin baik resolusi spasial dari citra.

Jenis sensor dan sifatnya
Berdasarkan proses perekamannya, sensor dibedakan:
a.       Sensor Fotografi
Proses perekaman ini berlangsung secara kimiawi. Tenaga elektromagnetik diterima dan direkam pada emulsi film yang bila diproses akan menghasilkan foto. Kalau pemotretan dilakukan dari pesawat udara atau wahana lainnya, fotonya disebut foto udara. Tapi bila pemotretan dilakukan dari antariksa, fotonya disebut foto orbital atau foto satelit.
b.      Sensor Elektrik
Sensor ini menggunakan tenaga elektrik dalam bentuk sinyal elektrik. Alat penerima dan perekamannya berupa pita magnetik atau detektor lainnya. Sinyal elektrik yang direkam pada pita magnetik ini kemudian diproses menjadi data visual maupun menjadi data digital yang siap dikomputerkan. Pemerosesannya menjadi citra dapat dilakukan dengan dua cara, yakni:
1)  dengan memotret data yang direkam dengan pita magnetik yang diwujudkan secara visual pada layar monitor.
2)  dengan menggunakan film perekam khusus. Hasilnya berupa foto dengan film sebagai alat perekamnya, tapi film di sini hanya berfungsi sebagai alat perekam saja, maka hasilnya disebut citra penginderaan jauh.

5.   Pengolahan Data
Pengolahan data dapat dilakukan dengan cara manual yaitu dengan interpretasi secara visual, dan dapat pula dengan cara numerik atau cara digital yaitu dengan menggunakan komputer. Foto udara pada umumnya diinterpretasi secara manual, sedangkan data hasil penginderaan jauh secara elektronik dapat diinterpretasi secara manual maupun secara numerik.

6.       Pengguna Data
Penggunaan data (orang, badan, atau pemerintah) merupakan komponen paling penting dalam penginderaan jauh karena para penggunalah yang dapat menentukan diterima atau tidaknya hasil penginderaan jauh tersebut. Data yang dihasilkan mencakup wilayah, sumber daya alam suatu negara yang merupakan data sangat penting untuk kepentingan orang banyak, maka data ini penting dijaga penggunaannya.   data sangat penting untuk kepentingan orang banyak, maka data ini penting dijaga penggunaannya.

D.       Sistem Penginderaan Jauh
Sensor penginderaan jauh mendapatkan informasi tentang obyek dari jarak jauh. Informasi yang didapatkan ini berasal dari sejumlah energi yang datang dari obyek dan diterima oleh sensor. Energi terrekam oleh sensor satelit dengan nilai yang bervariasi antar satu obyek dengan obyek lainnya ataupun pada sebuah obyek namun dengan kondisi yang berbeda.
Energi merupakan unsur yang sangat penting sebagai penghantar informasi dalam penginderaan jauh. Tanpa adanya energi ini maka informasi tidak akan dapat diperoleh oleh sensor satelit. Dengan demikian keberadaan energi yang masuk ke sensor adalah hal pokok dari perolehan informasi tentang obyek di muka bumi. Dengan mendasarkan pada bentuk energi ini, penginderaan jauh dapat dibedakan menjadu dua bentuk yaitu penginderaan jauh system pasif dan penginderaan jauh system aktif.
Penginderaan jauh sistem pasif adalah penginderaan jauh yang menggunakan energi yang berasal dari obyek. Energi dapat berupa pantulan dari sumber lain, yang dalam hal ini umumnya adalah matahari. Energi bersumber dari matahari. Energi dari matahari dipancarkan ke obyek dan kemudian terpantulkan menuju sensor. Energi dapat pula berasal dari pancaran suatu obyek seperti sumber-sumber thermal, misal lokasi kebakaran hutan, sumber panas bumi, dan lain-lain. Sensor satelit sistem ini tidak membangkitkan energi sendiri. Berbagai satelit sumber daya seperti Landsat, QuickBird, Ikonos, dan lain-lain adalah termasuk pada system penginderaan jauh pasif ini. Kelemahan penginderaan jauh sistem ini adalah resolusi spasialnya semakin kasar karena panjang gelombangnya semakin besar.
Penginderaan jauh system aktif adalah penginderaan jauh yang menggunakan energi yang berasal dari sensor tersebut. Sensor membangkitkan energi yang diarahkan ke obyek, kemudian obyek memantulkan kembali ke sensor. Energi yang kembali ke sensor membawa informasi tentang obyek tadi. Serangkaian nilai energi yang tertangkap sensor ini disimpan sebagai basis data dan selanjutnya dianalisis. Penginderaan jauh aktif dapat dilakukan pada siang ataupun malam hari. Sistem penginderaan jauh aktif tidak tergantung pada adanya sinar matahari, karena energi bersumber dari sensor. Contoh dari system penginderaan jauh aktif ini adalah system kerja radar. Radar membangkitkan energi yang diarahkan ke obyek. Energi yang sampai pada obyek sebagian terpantul dan kembali ke sensor. Sensor radar kembali menangkap energi tersebut, energi yang telah melakukan perjalanan menuju obyek. Pada umumnya sistem ini menggunakan gelombang mikro, tapi dapat juga menggunakan spektrum tampak, dengan sumber tenaga buatan berupa laser.
Tenaga elektromagnetik pada penginderaan jauh sistem pasif dan sistem aktif untuk sampai di alat sensor dipengaruhi oleh atmosfer. Atmosfer mempengaruhi tenaga elektromagnetik yaitu bersifat selektif terhadap panjang gelombang, karena itu timbul istilah “Jendela atmosfer”, yaitu bagian spektrum elektromagnetik yang dapat mencapai bumi. Adapun jendela atmosfer yang sering digunakan dalam penginderaan jauh ialah spektrum tampak yang memiliki panjang gelombang 0,4 mikrometer hingga 0,7 mikrometer. Spektrum elektromagnetik merupakan spektrum yang sangat luas, hanya sebagian kecil saja yang dapat digunakan dalam penginderaan jauh, itulah sebabnya atmosfer disebut bersifat selektif terhadap panjang gelombang. Hal ini karena sebagian gelombang elektromagnetik mengalami hambatan, yang disebabkan oleh butirbutir yang ada di atmosfer seperti debu, uap air dan gas. Proses penghambatannya terjadi dalam bentuk serapan, pantulan dan hamburan.
Analisa data penginderaan jauh memerlukan data rujukan seperti peta tematik, data statistik dan data lapangan. Hasil nalisa yang diperoleh berupa informasi mengenai bentang lahan, jenis penutup lahan, kondisi lokasi dan kondisi sumberdaya lokasi. Informasi tersebut bagi para pengguna dapat dimanfaatkan untuk membantu dalam proses pengambilan keputusan dalam mengembangkan daerah tersebut. Keseluruhan proses mulai dari pengambilan data, analisis data hingga penggunaan data tersebut disebut Sistem Penginderaan Jauh (Purwadhi, 2001)

E.       Hasil Penginderaan Jauh
Dalam penginderaan jauh didapat masukan data atau hasil observasi yang disebut citra. Citra dapat diartikan sebagai gambaran yang tampak dari suatu objek yang sedang diamati, sebagai hasil liputan atau rekaman suatu alat pemantau. Sebagai contoh, memotret bunga di taman. Foto bunga yang berhasil kita buat itu merupakan citra bunga tersebut. Menurut Simonett (1983): bahwa citra sebagai gambaran rekaman suatu objek (biasanya berupa suatu gambaran pada foto) yang didapat dengan cara optik, elektro optik, optik mekanik atau elektronik. Di dalam bahasa Inggris terdapat dua istilah yang berarti citra dalam bahasa Indonesia, yaitu “image” dan “imagery”, akan tetapi istilah imagery dirasa lebih tepat penggunaannya (Susanto, 1986). Agar dapat dimanfaatkan maka citra tersebut harus diinterpretasikan atau diterjemahkan/ ditafsirkan terlebih dahulu.
Interpretasi citra merupakan kegiatan mengkaji foto udara dan atau citra dengan maksud untuk mengidentifikasi objek dan menilai arti pentingnya objek tersebut (Estes dan Simonett, 1975). Singkatnya interpretasi citra merupakan suatu proses pengenalan objek yang berupa gambar (citra) untuk digunakan dalam disiplin ilmu tertentu seperti Geologi, Geografi, Ekologi, Geodesi dan disiplin ilmu lainnya.
Dalam menginterpretasikan citra dibagi menjadi beberapa tahapan, yaitu:
a.       Deteksi ialah pengenalan objek yang mempunyai karakteristik tertentu oleh  sensor.
b.      Identifikasi ialah mencirikan objek dengan menggunakan data rujukan.
c.        Analisis ialah mengumpulkan keterangan lebih lanjut secara terinci.

Hasil proses rekaman data penginderaan jauh tersebut berupa:

a.       Data digital atau data numerik untuk dianalisis dengan menggunakan  komputer.
b.      Data visual dibedakan lebih jauh atas data citra dan data non citra untuk dianalisis dengan cara manual. Data citra berupa gambaran mirip aslinya, sedangkan data non citra berupa garis atau grafik.
c.        
Citra dapat dibedakan atas citra foto (photographic image) atau foto udara dan  non citra
1.      Citra Foto
Citra foto adalah gambaran yang dihasilkan dengan menggunakan sensor kamera. Citra foto dapat dibedakan berdasarkan:
a.      Spektrum Elektromagnetik yang digunakan
Berdasarkan spektrum elektromagnetik yang digunakan, citra foto dapat dibedakan atas:
1.         Foto ultra violet yaitu foto yang dibuat dengan menggunakan spektrum ultraviolet dekat dengan panjang gelombang 0,29 mikrometer.
2.         Foto ortokromatik yaitu foto yang dibuat dengan menggunakan spektrum tampak dari saluran biru hingga sebagian hijau (0,4 - 0,56 mikrometer).
3.         Foto pankromatik yaitu foto yang dengan menggunakan spektrum tampak mata.
4.         Foto infra merah yang terdiri dari foto warna asli (true infrared photo) yang dibuat dengan menggunakan spektrum infra merah dekat sampai panjang gelombang 0,9 mikrometer hingga 1,2 mikrometer dan infra merah modifikasi (infra merah dekat) dengan sebagian spektrum tampak pada saluran merah dan saluran hijau.
b.      Sumbu kamera
Foto udara dapat dibedakan berdasarkan arah sumbu kamera ke permukaan bumi, yaitu:
1.      Foto vertikal atau foto tegak (orto photograph), yaitu foto yang dibuat dengan sumbu kamera tegak lurus terhadap permukaan bumi.
2.      Foto condong atau foto miring (oblique photograph), yaitu foto yang dibuat dengan sumbu kamera menyudut terhadap garis tegak lurus ke permukaan bumi. Sudut ini pada umumnya sebesar 10 derajat atau lebih besar. Tapi apabila sudut condongnya masih berkisar antara 1 - 4 derajat, foto yang dihasilkan masih digolongkan sebagai foto vertikal.

Foto condong masih dibedakan lagi menjadi:
a.       Foto agak condong (low oblique photograph), yaitu apabila cakrawala tidak tergambar pada foto.
b.      Foto sangat condong (high oblique photograph), yaitu apabila pada foto tampak cakrawalanya.
c.       Warna yang digunakan
Berdasarkan warna yang digunakan, citra foto dapat dibedakan atas:
1.            Foto berwarna semua (false colour).
Warna citra pada foto tidak sama dengan warna aslinya. Misalnya pohonpohon yang berwarna hijau dan banyak memantulkan spketrum infra merah, pada foto tampak berwarna merah.
2.            Foto berwarna asli (true colour).
Contoh: foto pankromatik berwarna.
d.      Wahana yang digunakan
Berdasarkan wahana yang digunakan, ada 2 (dua) jenis citra, yakni:
1) Foto udara, dibuat dari pesawat udara atau balon
2) Foto satelit/orbital, dibuat dari satelit
2.      Citra Non Foto
Citra non foto adalah gambaran yang dihasilkan oleh sensor bukan kamera Citra non foto dibedakan atas:
a.            Spektrum elektromagnetik yang digunakan
Berdasarkan spektrum elektromagnetik yang digunakan dalam penginderaan, citra non foto dibedakan atas:
1.      Citra infra merah thermal, yaitu citra yang dibuat dengan spektrum infra merah thermal. Penginderaan pada spektrum ini mendasarkan atas beda suhu objek dan daya pancarnya pada citra tercermin dengan beda rona atau beda warnanya.
2.      Citra radar dan citra gelombang mikro, yaitu citra yang dibuat dengan spektrum gelombang mikro. Citra radar merupakan hasil penginderaan dengan sistim aktif yaitu dengan sumber tenaga buatan, sedang citra gelombang mikro dihasilkan dengan sistim pasif yaitu dengan menggunakan sumber tenaga alamiah.


b.            Sensor yang digunakan
Berdasarkan sensor yang digunakan, citra non foto terdiri dari:
1)            Citra tunggal, yakni citra yang dibuat dengan sensor tunggal, yang salurannya lebar.
2)            Citra multispektral, yakni citra yang dibuat dengan sensor jamak, tetapi salurannya sempit, yang terdiri dari:
·         Citra RBV (Return Beam Vidicon), sensornya berupa kamera yang hasilnya tidak dalam bentuk foto karena detektornya bukan film dan prosesnya non fotografik.
·         Citra MSS (Multi Spektral Scanner), sensornya dapat menggunakan spektrum tampak maupun spektrum infra merah thermal. Citra ini dapat dibuat dari pesawat udara.
c.             Wahana yang digunakan
Berdasarkan wahana yang digunakan, citra non foto dibagi atas:
1)      Citra Dirgantara (Airborne Image), yaitu citra yang dibuat dengan wahana yang beroperasi di udara (dirgantara).
Contoh: Citra infra merah thermal, citra radar dan citra MSS. Citra dirgantara ini jarang digunakan.
2)      Citra Satelit (Satellite/Spaceborne Image), yaitu citra yang dibuat dari antariksa atau angkasa luar. Citra ini dibedakan lagi atas penggunaannya, yakni:
a)     Citra satelit untuk penginderaan planet. Contoh: Citra satelit Viking (AS), Citra satelit Venera (Rusia)
b)     Citra satelit untuk penginderaan cuaca. Contoh: NOAA (AS), Citra Meteor (Rusia).
c)      Citra satelit untuk penginderaan sumber daya bumi. Contoh: Citra Landsat (AS), Citra Soyuz (Rusia) dan Citra SPOT (Perancis).
d)      Citra satelit untuk penginderaan laut. Contoh: Citra Seasat (AS), Citra MOS (Jepang).
Pada dasarnya kegiatan interpretasi citra terdiri dari 2 proses, yaitu melalui pengenalan objek melalui proses deteksi dan penilaian atas fungsi objek.
a.       Pengenalan objek melalui proses deteksi yaitu pengamatan atas adanya suatu objek, berarti penentuan ada atau tidaknya sesuatu pada citra atau upaya untuk mengetahui benda dan gejala di sekitar kita dengan menggunakan alat pengindera (sensor). Untuk mendeteksi benda dan gejala di sekitar kita, penginderaannya tidak dilakukan secara langsung atas benda, melainkan dengan mengkaji hasil rekaman dari foto udara atau satelit.
b.      Identifikasi.
Ada 3 (tiga) ciri utama benda yang tergambar pada citra berdasarkan ciri yang terekam oleh sensor yaitu sebagai berikut:
•         Spektoral
Ciri spektoral ialah ciri yang dihasilkan oleh interaksi antara tenaga elektromagnetik dan benda yang dinyatakan dengan rona dan warna.
•         Spatial
Ciri spatial ialah ciri yang terkait dengan ruang yang meliputi bentuk, ukuran, bayangan, pola, tekstur, situs, dan asosiasi.
•         Temporal
Ciri temporal ialah ciri yang terkait dengan umur benda atau saat perekaman.

F.       Unsur Interpretasi Citra
Ada beberapa hal yang perlu diperhatikan dalam mengamati kenampakan objek dalam foto udara, yaitu:
1.      Rona dan Warna
Rona atau tone adalah tingkat kecerahan atau kegelapan suatu objek yang terdapat pada foto udara atau pada citra lainnya. Pada foto hitam putih rona yang ada biasanya adalah hitam, putih atau kelabu. Tingkat kecerahannya tergantung pada keadaan cuaca saat pengambilan objek, arah datangnya sinar matahari, waktu pengambilan gambar (pagi, siang atau sore) dan sebagainya.
Pada foto udara berwarna, rona sangat dipengaruhi oleh spektrum gelombang elektromagnetik yang digunakan, misalnya menggunakan spektrum ultra violet, spektrum tampak, spektrum infra merah dan sebagainya. Perbedaan penggunaan spektrum gelombang tersebut mengakibatkan rona yang berbeda-beda. Selain itu karakter pemantulan objek terhadap spektrum gelombang yang digunakan juga mempengaruhi warna dan rona pada foto udara berwarna.
2.      Bentuk
Bentuk-bentuk atau gambar yang terdapat pada foto udara merupakan konfigurasi atau kerangka suatu objek. Bentuk merupakan ciri yang jelas, sehingga banyak objek yang dapat dikenali hanya berdasarkan bentuknya saja. Contoh:
1)      Gedung sekolah pada umumnya berbentuk huruf I, L, U atau empat persegi panjang.
2)      Gunung api, biasanya berbentuk kerucut.
3.      Ukuran
Ukuran merupakan ciri objek yang antara lain berupa jarak, luas, tinggi lereng dan volume. Ukuran objek pada citra berupa skala, karena itu dalam memanfaatkan ukuran sebagai interpretasi citra, harus selalu diingat skalanya.
Contoh: Lapangan olah raga sepakbola dicirikan oleh bentuk (segi empat) dan ukuran yang tetap, yakni sekitar (80 m - 100 m).
4.      Tekstur
Tekstur adalah frekwensi perubahan rona pada citra. Ada juga yang mengatakan bahwa tekstur adalah pengulangan pada rona kelompok objek yang terlalu kecil untuk dibedakan secara individual. Tekstur dinyatakan dengan: kasar, halus, dan sedang Misalnya: Hutan bertekstur kasar, belukar bertekstur sedang dan semak bertekstur halus, Pabrik dapat dikenali dengan bentuknya yang serba lurus dan ukurannya yang besar, jauh lebih besar dari ukuran rumah mukim pada umumnya. Pabrik itu berasosiasi dengan lori yang tampak pada foto dengan bentuk empat persegi panjang dan ronanya kelabu, mengelompok dalam jumlah besar .
5.      Pola
Pola atau susunan keruangan merupakan ciri yang menandai bagi banyak objek bentukan manusia dan bagi beberapa objek alamiah. Contoh: Pola aliran sungai menandai struktur geologis. Pola aliran trelis menandai struktur lipatan. Permukiman transmigrasi dikenali dengan pola yang teratur, yaitu ukuran rumah dan jaraknya seragam, dan selalu menghadap ke jalan. Kebun karet, kebun kelapa, kebun kopi mudah dibedakan dari hutan atau vegetasi lainnya dengan polanya yang teratur, yaitu dari pola serta jarak tanamnya.
6.      Bayangan
Bayangan bersifat menyembunyikan detail atau objek yang berada di daerah gelap. Meskipun demikian, bayangan juga dapat merupakan kunci pengenalan yang penting bagi beberapa objek yang justru dengan adanya bayangan menjadi lebih jelas.
Contoh: Lereng terjal tampak lebih jelas dengan adanya bayangan, begitu juga cerobong asap dan menara, tampak lebih jelas dengan adanya bayangan.
Foto-foto yang sangat condong biasanya memperlihatkan bayangan objek yang tergambar dengan jelas, sedangkan pada foto tegak hal ini tidak terlalu mencolok, terutama jika pengambilan gambarnya dilakukan pada tengah hari.
7.      Situs
Situs adalah letak suatu objek terhadap objek lain di sekitarnya. Misalnya permukiman pada umumnya memanjang pada pinggir beting pantai, tanggul alam atau sepanjang tepi jalan. Juga persawahan, banyak terdapat di daerah dataran rendah, dan sebagainya.
8.      Asosiasi
Asosiasi adalah keterkaitan antara objek yang satu dengan objek yang lainnya.
Contoh: Stasiun kereta api berasosiasi dengan jalan kereta api yang jumlahnya lebih dari satu (bercabang).
9.      Konvergensi Bukti
Konvergensi bukti ialah penggunaan beberapa unsur interpretasi citra sehingga lingkupnya menjadi semakin menyempit ke arah satu kesimpulan tertentu.
Contoh: Tumbuhan dengan tajuk seperti bintang pada citra, menunjukkan pohon palem. Bila ditambah unsur interpretasi lain, seperti situsnya di tanah becek dan berair payau, maka tumbuhan palma tersebut adalah sagu.

BAB III
KESIMPULAN

Penginderaan Jauh adalah ilmu dan seni untuk memperoleh informasi tentang obyek, daerah, atau gejala dengan jalan menganalisis data yang diperoleh dengan menggunakan alat tanpa kontak langsung terhadap obyek, daerah, atau gejala yang dikaji (Lillesand and Kiefer, 1979).
Citra adalah gambaran rekaman suatu obyek (biasanya berupa gambaran pada foto) yang dibuahkan dengan cara optik, elektro-optik, optik mekanik, atau elektronik dan dipasang pada wahana. Tujuan utama dari penginderaan jauh adalah untuk mengumpulkan data sumber daya alam dan lingkungan Komponen Penginderaan Jauh yaitu : sumber tenaga, atmosfer, interaksi tenaga dengan objek di permukaan bumi, sensor, sistem pengolahan data, dan dan berbagai penggunaan data. Penginderaan jauh dapat dibedakan menjadu dua bentuk yaitu penginderaan jauh system pasif yang menggunakan energi yang berasal dari obyek. Energi dapat berupa pantulan dari sumber lain, yang dalam hal ini umumnya adalah matahari dan penginderaan jauh system aktif yang menggunakan energi yang berasal dari sensor tersebut.
interpretasi citra merupakan suatu proses pengenalan objek yang berupa gambar (citra) untuk digunakan dalam disiplin ilmu tertentu seperti Geologi, Geografi, Ekologi, Geodesi dan disiplin ilmu lainnya. Dalam menginterpretasikan citra dibagi menjadi beberapa tahapan, yaitu:
1.      Deteksi ialah pengenalan objek yang mempunyai karakteristik tertentu oleh  sensor.
2.      Identifikasi ialah mencirikan objek dengan menggunakan data rujukan.
3.       Analisis ialah mengumpulkan keterangan lebih lanjut secara terinci.
Karakteristik yang tergambar pada citra dan digunakan untuk mengenali objek disebut unsur interpretasi citra yang meliputi : rona/ warna, ukuran, bentuk, pola, tekstur, bayangan, situs, asosiasi, dan konvergensi bukti